معلومات آخرین
Home / علم (page 125)

علم

موادلة اینتگرالی

muodilai-integrali

موادلة اینتگرالی، معادله‌ای است، که فونکسیة نامعلوم آن تحت علامت اینتگرال واقع است. معادلة اینتگرالی جنس دو­یوم فریدگالم از سادهترین معادلة اینتگرالیست، که در آن 1ر (ج)-فونکسیة نامعلوم، /(ج)-اعضای آزاد، ک (ج، t)-یدرای معادلة اینتگرالی، x-پرمیتر (هم قیمتهای حقیقی و هم قیمتهای کامپلیکسی ق­بول کرده می‌تواند) می‌باشد. در مورد/(ج) “0 …

مفصل

موادلة لپلس

muodilai-laplas

موادلة لپلس، معادلة دیفرانسیلی حاصله‌هایشان خ و-سوسیی -را گویند: این جا خ# و، گ-تغییریابنده‌های مستقل، ا=u (x، و، خ) فونکسیة مطلوب. این معادله را با­ر اوّل سال 1782 پ. لپلس در اثرهایش عاید به نظریة جاذبه معاینه کرده است. حلّ یک قطار مسئله‌های فیزیکه و تکنیکه با واسطة معادلة لنگرج …

مفصل

موادلة دوعزایی

muodilai-duazoi

موادلة دوعزای، معادلة نمود ج*-ا=0-را گویند، که در آن ا یگان عدد حقیقی یا کامپلیک­سی می‌باشد. به حل نمودن چنین معادله‌ها مسئلة از ریشة درجة n-م برآوردن عدد ا (ج»= و ا) می‌آورد. معادلة دوعزایی n-تا ریشه‌های گوناگون دارد، که در بین آنها ریشه‌های حقیقی از 2-تا زیاد نیستند. اگر …

مفصل

موادلة لگرنج

muodilai-lagranj

موادلة لگرنج، معادی­لة دلمبیر، معادلة دیف­فیرینسیلی عادّی ترتیب یکم را گویند، که نسبت به تغییریابنده‌های وابسته و ناوابسته خطّیست و چنین نمود دارد: ین جا ا’–♦ و/- فونکسیه‌های نسبت به ارگومینتشان دیو-فیرینسیانیدشوندة داده شده. اینتگرال عمومی معادلة لنگرج را در شکل پرمیتری هنگام نسبت به خ دیفّیرینسیانیدن معادله یاف­تن ممکن …

مفصل

موادلة دیفّیریندسیلی خودپیوست

muodilai-differensiali

موادلة دیفّیریندسیلی خودپیوست، معادله‌ای است، که با معادلة به خودش همراهشده (پیوسته) هلهای یک‌خِله دارد (نگرید معادله‌های دیفرانسیلی همراهشده). معادلة دیفرانسیلی خودپیوست عادّی ترتیبشان جفت (2m) و ترتیبشان طاق (2ت-1) موافقن شکلهای زیرین را دارند: ک در آن ai فونکسیه‌های خ می‌با­شند. مفهوم معادلة دیفرانسیلی خودپیوست در نظریة معادله‌های دیفرانسیلی …

مفصل

موادلة کوبی

muodilai-kubi

موادلة کوبی، معادلة الگیبروی ترتیب سوّم نمود اخ9+bx2+سخ-f-d=0-را گویند، که در آن ا^ا می‌با­شد. در این معادله خ-را با نامع­لوم نو او، که با خ توسط برا­بری خ=ا              علاقه‌مند است، یوز    نموده، معادلرا           ب        شکلی نیسبتة ساده       (کنانی)         تبدل          دا­دن ممکن: و3+ر و 4-یه =0. ک در آن و* …

مفصل

موادلة دیرک

Uravnenie-diraka

موادلة دیرک، معادلة کونتی حرکت الکترون را گویند، که موافقن به خلاصه‌های نظریة نسبیت مرتّب ساخته توده است (پ. دیرک، سال 1928). از معادلة دیرک برمی‌آید، که الکترون مامینت مقدار  هرکت مکانیکی خاص-سپین. با یاری معادلة دیرک فامولة صحیحتری  سویه‌های انرژیة اتم گید­راگین (و اتمهای هیدروژنمانند) حاصل کرده شد، که …

مفصل

موادلة کاش-ریمن

koshi-riman

موادلة کاش-ریمن در نظریة فونکسیه‌های ته-ل ا ل ی، معادلة دیفرانسیلی حاصله‌هایش خصوصی ترتیب یکم را گویند، که وابستگی قسم حقیقی و قسم موهوم فونکسیة تحلیلی w=ا+iv تغییریابنده‌اش کامپلیکسی خ=خ+iy-را افاده می‌کند، یعنی ین نوع معادله‌ها در نظریة فونکسیه‌های تحلیلی و تطبیق آنها به مسئله‌های مکانیکه و فی­زیکه اهمیت کلان …

مفصل

موادلة بیرنولّ در گیدرادینمیکه

bernulli

موادلة بیرنولّ در گیدرادینمیکه، معادلة اسا­سی گیدرادینمیکه را گویند، که علاقة بیو سرعت مایع روان (و) و ر فشار آن (ر)-l را هنگام استوار (ستسیانر) بودن جاریشوی افاده می‌کند. دنیال بیرنولّ (1738) از قانون بقای انرژیة مایع واحد حجم استفاده برده این معادله را یافت. در میدان قوّة وزنیوی برای …

مفصل

موادلة بیرنولّ

Jakob_Bernoulli

موادلة بیرنولّی، در م­تیمتیکه، معادلة دیفّیرین-سیلی ترتیب یکم نمود du -+ر و=qya -را گویند، که این جا ا-عدد ثابته، ر، q-فونکسیه‌های بی‌فاصلة داده شده از خ. با یاری گزارش i- و-ا-م این معادله را به معادلة دیفرانسیلی خطّی نسبت به گ مبدّل کردن ممکن است. این معادله را بار اوّل …

مفصل